ICS 103: Computer Programming in C
Handout-9 Topic: Function with Input Parameter.

Objective:
· To know what is Function and what is the need of function.

· To know general form of Function Definition.

· To know about Function Prototype and its importance.

· To learn how to write user defined functions with input parameter.

· To know use of void in function.

· To know about actual and formal parameters of function.

· To know about different forms of return statements and their uses.

What is Function? :
Functions are the building blocks of any C program. In fact, a C program is a collection of functions e . g main () , scanf(), printf(), sqrt(x), pow(x,y)…… sin(x), cos(x) etc. Functions are two types one is User defined and another is Standard Functions.

Why are functions needed? :
· Dividing a large program into functions improves the understanding of the problem.

· Makes programs easy to correct and easy to maintain

· A function can be executed (called) from several locations in a program.

· It is not necessary to know the internal code of a function in order to be able to use it. For example, we do not know the code for the function printf(), but we know how to use it. Reuse of function subprograms.

Function definition (writing the function code) : The general form for function definition is :

Function type (or function return type) is the type of data item that is returned to the caller, such as in , double , …etc.

Function name: (or function identifier) is the name of the function. The same rules for the variable names(identifiers) are applied to function names. Functions are identified and are called(referred to) by their names.

Parameter list: specifies the type of data items passed to the function. The data types are placed between parentheses, and if there is more than one item, they are separated by commas.

Function prototype (declaring a function):
Like variables, functions must be declared before they are used. The function prototype serves as a function declaration. The general form for function declarations (function prototype is) :

	double large(double x1, double x2, char y);

For Example :

int sum (int , int); declares a function called sum with a parameter list that consists of two int type data items. That is sum() expects two int type data items when it is called, and returns a int type data item to the caller.

· Specifying a name for each of the items in the parameter list is optional, but highly recommended.

e . g int sum (int x, int y);

Function with Input Arguments / Parameter which can return a single value at a time :
Till now we were using only one function, the main function in our programs. Programs can also be written where there can be one or more function subprograms other than the main function. The program should always have a main function whether it has function subprograms or not. Without the main function the program will not do anything as the program always starts from the main function.

Functions can be of following different types:
· Functions returning no value and accepting no value.

· Function returning no value but accepting one or more values.

· Function returning one value or accepting one or more values.

Let abc be a function name :

Then function that does not return any value and accept any value can be declared as:

void abc (void)

Function that accepts one or more value and returns no value can be declared as :

void abc (int x, float y, double d, int a)

Function that returns one value and accepts one or more values can be written as :

int abc (int b, double k, char p)

Here the function is returning an integer value.

float abc (int g, char h, double r)

Here the function is returning a float value.

Input parameters/Arguments in any function are those arguments which are declared as ordinary variable and which are used to supply some input to function and Output Parameter/Output Argument in any Function are special variables which are declared as pointer and which are used to carry/return more than one outputs from the function .

Function using only input parameter/argument can return only single value at a time while by using output parameters in any function that function can return more than one value(results) at a time.

In this Handout9 we will study only Function with Input parameter/Argument which can return only single value at a time.

Example (i):

/* Function with Input Arguments and a Single Result */

#include<stdio.h>

void print_rboxed(double rnum) // User defined function
{

printf("**********************\n");

printf("* *\n");

printf("* %7.2f *\n", rnum);

printf("* *\n");

printf("**********************\n");

} // end of print_rboxed user defined function

void main() // calling function

{
 print_rboxed(2.24567); // function call

}// end of main

Sample output:

[image: image1.png][(nactive C:ATCWIN45\BIN\HS_1.EXE)

* 2.5 *

K]

Example (ii):

/* Function to find larger of two numbers */

#include<stdio.h>

double bigger(double n1, double n2) // function definition

{

double larger; // variable declaration
if(n1>n2)

 larger=n1;

else

 larger=n2;

return (larger); // returns value of larger to calling plaice in main function
} // end of bigger function
void main()

{

double number1,number2, max; // variable declaration

printf("Please input two numbers :");

scanf("%lf %lf", &number1, &number2); // input
max = bigger(number1, number2); // function call
printf("The max of %lf and %lf is = %lf",number1,number2, max);

} // end of calling main function

Sample Output:

[image: image2.png]C:\TCWINAS\BINAHS_2.EXE)

nput tuo numbers :0 77.89
The max of 40.000000 and 77.890000 is

(K3}

77.890000

Example (iii):

#include<stdio.h>

float mul(float x,float y) // user defined function mul
{
float product;

product=x*y;
 return product;

} // end of mul function

float division(float number1, float number2) // user defined function division
{

float div;

div=number1/number2;

return div;

} // end of division function

void main() // calling function

{

float n1, n2, product, d;

printf("Please input value of n1 and n2 : ", &n1, &n2);

scanf("%f %f", &n1, &n2);

product = mul(n1, n2); // function call

d = division(n1, n2); // function call

printf("The product of %f and %f is = %f\n", n1, n2, product);

printf("The division of %f and %f is = %f", n1, n2, d);

return;

} // end of main

Sample Output:

[image: image3.png]C:ATCWINASABINAHI_3 EXE)

nput value of n1 and n2 : 7 3

The product of 7.000000 and 3.000000 is = 21.000000
The division of 7.000000 and 3.000000 is = 2.333333

(K3}

A short function is written below to calculate the net pay of an employee based on values for the wage rate and hours worked. These values are passed as arguments to function called calc_net_pay. The function then computes the net pay and returns the computed value to main.

Example (iv):

#include <stdio.h>

float calc_net_pay (float wage, int hours) ; /* function prototype. Write this before main always */
void main (void)

{

 float wage, net_pay ;

 int
hours ;

 printf (“Enter the wage rate and number of hours worked\n”) ; /* Ask the user to enter input */

 scanf (“%f %d”, &wage, &hours) ;

/* read input */

 net_pay = calc_net_pay (wage, hours) ;
/* call the function by passing the input variables */

 printf (“The net pay = %8.2f\n”, net_pay) ;
/* print the result stored in net_pay returned by function */

} // end of main

float calc_net_pay (float wage, int hours)
/* function header same as function prototype given at the start of program */

{

float
 g_pay, f_tax, soc_sec, net_pay ;
/* function body */

const float FED_TAX = 0.28 ;

/* constant declaration */

const
float
SOC_SEC = 0.055 ;

g_pay = wage * hours ;

f_tax = FED_TAX * g_pay ;

soc_sec = SOC_SEC * g_pay ;

net_pay = g_pay – (f_tax + soc_sec) ;

return (net_pay) ; /* end of function by returning the result in net_pay */
} // end of main

The calc_net_pay function is called from main and given two arguments wage and hours, which are usually the input variables. The name of the function, the number of arguments and the types of arguments should always be same while calling the function and while declaring the function in the header or as prototype. Once the function is called the control is transferred to the function and returns back to the main program with the return statement.

In the above program if the function calc_net_pay does not return any value then it has to print the result inside the function itself. Also while calling the function just call the function along with its arguments without assigning the call to any variable. It is cleared from following Example :

Example(v):

#include <stdio.h>

void calc_net_pay (float wage, int hours) ; /* function prototype. Write this before main always */

void main (void)

{

 float wage, net_pay ;

 int
hours ;

 printf (“Enter the wage rate and number of hours worked\n”) ; /* Ask the user to enter input */

 scanf (“%f %d”, &wage, &hours) ; /* read input */

 calc_net_pay (wage, hours) ; /* call the function by passing the input variables */

} // end of main

void calc_net_pay (float wage, int hours)
/* function header same as function prototype given at the start of program */

{

float
 g_pay, f_tax, soc_sec, net_pay ;
/* function body */

const
float
FED_TAX = 0.28 ;

/* constant declaration */

const
float
SOC_SEC = 0.055 ;

g_pay = wage * hours ;

f_tax = FED_TAX * g_pay ;

soc_sec = SOC_SEC * g_pay ;

net_pay = g_pay – (f_tax + soc_sec) ;

printf (“The net pay = %8.2f\n”, net_pay) ;
/* print the result stored in net_pay */

} // end of user defined function calc_net_pay

Argument List Correspondence Rules :
· The number of actual arguments/parameter, the order of actual argument and type of actual arguments used in a call to a function must be the same as the number of formal parameters, the order of formal parameters and type of formal parameters/arguments listed in the function definition.

Use of return Statement in Function :
An return statement can take one of the following form :

 return;

 Or

 return(expression);

The first , the ‘plain’ return does not return any value, just it returns control to calling function.

e.g

 if(error)

 return;

The second form of return with an expression returns the value of the expression.

e.g

 int mul(int x, int y)

 {

 int p;

 p=x*y;

 return(p);

 }

In this above last two statements can be combined into one statement as

follows :

 return (x*y);

Can a function have more than one return Statements ? :
Yes. A function may have more than one return statements . This situation arises when the value returned is based on certain conditions:

e.g

 if(x<=0)

 return(0);

 else

 return(1);

Note: All functions by default return int type data. But we can make it any type.

Exercise:

Write a menu driven program, which has the following options:

1. Find Factorial of a Number.

2. Check if Number is Prime or not.

3. Check if Number is Even.

4. Exit

It must execute appropriate choice entered by user.

You need to write, in addition to the main function, three other functions:

factorial that returns a factorial of its parameter. The return type should be long.

prime which receives an integer number and returns 1 if it is prime, 0 otherwise. A prime number is a number greater than 1, with no divisor except 1 and itself.

even which should return 1 if its parameter is even, 0 otherwise.

function_return_type function name (parameter list separated by commas)�
�

PAGE
 Page 10 of 10

